Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantifying dynamic resource allocation illuminates foraging strategy in Phanerochaete velutina.

Identifieur interne : 000676 ( Main/Exploration ); précédent : 000675; suivant : 000677

Quantifying dynamic resource allocation illuminates foraging strategy in Phanerochaete velutina.

Auteurs : M. Tlalka [Royaume-Uni] ; D P Bebber ; P R Darrah ; S C Watkinson ; M D Fricker

Source :

RBID : pubmed:18467134

Descripteurs français

English descriptors

Abstract

Saprotrophic woodland fungi forage for mineral nutrients and woody resources by extension of a mycelial network across the forest floor. Different species explore at different rates and establish networks with qualitatively differing architecture. However, detailed understanding of fungal foraging behaviour has been hampered by the absence of tools to quantify resource allocation and growth accurately and non-invasively. To solve this problem, we have used photon-counting scintillation imaging (PCSI) to map and quantify nutrient allocation and localised growth simultaneously in heterogeneous resource environments. We show that colonies spontaneously shift to an asymmetric growth pattern, even in the absence of added resources, often with a distinct transition between the two growth phases. However, the extent of polarisation was much more pronounced and focussed in the presence of an additional cellulose resource. In this case, there was highly localised growth, often at the expense of growth elsewhere in the colony, and marked accumulation of (14)C-AIB in the sector of the colony with the added resource. The magnitude of the response was greatest when resource was added around the time of the endogenous developmental transition. The focussed response required a metabolisable resource, as only limited changes were seen with glass fibre discs used to mimic the osmotic and thigmotropic stimuli upon resource addition. Overall the behaviour is consistent with an adaptive foraging strategy, both to exploit new resources and also to redirect subsequent foraging effort to this region, presumably with an expectation that the probability of finding additional resources is increased.

DOI: 10.1016/j.fgb.2008.03.015
PubMed: 18467134


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantifying dynamic resource allocation illuminates foraging strategy in Phanerochaete velutina.</title>
<author>
<name sortKey="Tlalka, M" sort="Tlalka, M" uniqKey="Tlalka M" first="M" last="Tlalka">M. Tlalka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB</wicri:regionArea>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bebber, D P" sort="Bebber, D P" uniqKey="Bebber D" first="D P" last="Bebber">D P Bebber</name>
</author>
<author>
<name sortKey="Darrah, P R" sort="Darrah, P R" uniqKey="Darrah P" first="P R" last="Darrah">P R Darrah</name>
</author>
<author>
<name sortKey="Watkinson, S C" sort="Watkinson, S C" uniqKey="Watkinson S" first="S C" last="Watkinson">S C Watkinson</name>
</author>
<author>
<name sortKey="Fricker, M D" sort="Fricker, M D" uniqKey="Fricker M" first="M D" last="Fricker">M D Fricker</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18467134</idno>
<idno type="pmid">18467134</idno>
<idno type="doi">10.1016/j.fgb.2008.03.015</idno>
<idno type="wicri:Area/Main/Corpus">000694</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000694</idno>
<idno type="wicri:Area/Main/Curation">000694</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000694</idno>
<idno type="wicri:Area/Main/Exploration">000694</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantifying dynamic resource allocation illuminates foraging strategy in Phanerochaete velutina.</title>
<author>
<name sortKey="Tlalka, M" sort="Tlalka, M" uniqKey="Tlalka M" first="M" last="Tlalka">M. Tlalka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB</wicri:regionArea>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bebber, D P" sort="Bebber, D P" uniqKey="Bebber D" first="D P" last="Bebber">D P Bebber</name>
</author>
<author>
<name sortKey="Darrah, P R" sort="Darrah, P R" uniqKey="Darrah P" first="P R" last="Darrah">P R Darrah</name>
</author>
<author>
<name sortKey="Watkinson, S C" sort="Watkinson, S C" uniqKey="Watkinson S" first="S C" last="Watkinson">S C Watkinson</name>
</author>
<author>
<name sortKey="Fricker, M D" sort="Fricker, M D" uniqKey="Fricker M" first="M D" last="Fricker">M D Fricker</name>
</author>
</analytic>
<series>
<title level="j">Fungal genetics and biology : FG & B</title>
<idno type="eISSN">1096-0937</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Transport (MeSH)</term>
<term>Carbon Radioisotopes (metabolism)</term>
<term>Gamma Cameras (MeSH)</term>
<term>Hyphae (chemistry)</term>
<term>Hyphae (cytology)</term>
<term>Hyphae (growth & development)</term>
<term>Hyphae (physiology)</term>
<term>Models, Biological (MeSH)</term>
<term>Models, Statistical (MeSH)</term>
<term>Phanerochaete (chemistry)</term>
<term>Phanerochaete (cytology)</term>
<term>Phanerochaete (growth & development)</term>
<term>Phanerochaete (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Caméras à rayons gamma (MeSH)</term>
<term>Hyphae (composition chimique)</term>
<term>Hyphae (croissance et développement)</term>
<term>Hyphae (cytologie)</term>
<term>Hyphae (physiologie)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Modèles statistiques (MeSH)</term>
<term>Phanerochaete (composition chimique)</term>
<term>Phanerochaete (croissance et développement)</term>
<term>Phanerochaete (cytologie)</term>
<term>Phanerochaete (physiologie)</term>
<term>Radio-isotopes du carbone (métabolisme)</term>
<term>Transport biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Radioisotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Hyphae</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Hyphae</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Hyphae</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Hyphae</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Hyphae</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Hyphae</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Radio-isotopes du carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Hyphae</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Hyphae</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Gamma Cameras</term>
<term>Models, Biological</term>
<term>Models, Statistical</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Caméras à rayons gamma</term>
<term>Modèles biologiques</term>
<term>Modèles statistiques</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Saprotrophic woodland fungi forage for mineral nutrients and woody resources by extension of a mycelial network across the forest floor. Different species explore at different rates and establish networks with qualitatively differing architecture. However, detailed understanding of fungal foraging behaviour has been hampered by the absence of tools to quantify resource allocation and growth accurately and non-invasively. To solve this problem, we have used photon-counting scintillation imaging (PCSI) to map and quantify nutrient allocation and localised growth simultaneously in heterogeneous resource environments. We show that colonies spontaneously shift to an asymmetric growth pattern, even in the absence of added resources, often with a distinct transition between the two growth phases. However, the extent of polarisation was much more pronounced and focussed in the presence of an additional cellulose resource. In this case, there was highly localised growth, often at the expense of growth elsewhere in the colony, and marked accumulation of (14)C-AIB in the sector of the colony with the added resource. The magnitude of the response was greatest when resource was added around the time of the endogenous developmental transition. The focussed response required a metabolisable resource, as only limited changes were seen with glass fibre discs used to mimic the osmotic and thigmotropic stimuli upon resource addition. Overall the behaviour is consistent with an adaptive foraging strategy, both to exploit new resources and also to redirect subsequent foraging effort to this region, presumably with an expectation that the probability of finding additional resources is increased.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18467134</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>07</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1096-0937</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>45</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2008</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Fungal genetics and biology : FG & B</Title>
<ISOAbbreviation>Fungal Genet Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantifying dynamic resource allocation illuminates foraging strategy in Phanerochaete velutina.</ArticleTitle>
<Pagination>
<MedlinePgn>1111-21</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.fgb.2008.03.015</ELocationID>
<Abstract>
<AbstractText>Saprotrophic woodland fungi forage for mineral nutrients and woody resources by extension of a mycelial network across the forest floor. Different species explore at different rates and establish networks with qualitatively differing architecture. However, detailed understanding of fungal foraging behaviour has been hampered by the absence of tools to quantify resource allocation and growth accurately and non-invasively. To solve this problem, we have used photon-counting scintillation imaging (PCSI) to map and quantify nutrient allocation and localised growth simultaneously in heterogeneous resource environments. We show that colonies spontaneously shift to an asymmetric growth pattern, even in the absence of added resources, often with a distinct transition between the two growth phases. However, the extent of polarisation was much more pronounced and focussed in the presence of an additional cellulose resource. In this case, there was highly localised growth, often at the expense of growth elsewhere in the colony, and marked accumulation of (14)C-AIB in the sector of the colony with the added resource. The magnitude of the response was greatest when resource was added around the time of the endogenous developmental transition. The focussed response required a metabolisable resource, as only limited changes were seen with glass fibre discs used to mimic the osmotic and thigmotropic stimuli upon resource addition. Overall the behaviour is consistent with an adaptive foraging strategy, both to exploit new resources and also to redirect subsequent foraging effort to this region, presumably with an expectation that the probability of finding additional resources is increased.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tlalka</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bebber</LastName>
<ForeName>D P</ForeName>
<Initials>DP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Darrah</LastName>
<ForeName>P R</ForeName>
<Initials>PR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Watkinson</LastName>
<ForeName>S C</ForeName>
<Initials>SC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fricker</LastName>
<ForeName>M D</ForeName>
<Initials>MD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P19284</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>04</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Fungal Genet Biol</MedlineTA>
<NlmUniqueID>9607601</NlmUniqueID>
<ISSNLinking>1087-1845</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002250">Carbon Radioisotopes</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002250" MajorTopicYN="N">Carbon Radioisotopes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015902" MajorTopicYN="N">Gamma Cameras</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015233" MajorTopicYN="Y">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>02</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2008</Year>
<Month>03</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>03</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18467134</ArticleId>
<ArticleId IdType="pii">S1087-1845(08)00059-5</ArticleId>
<ArticleId IdType="doi">10.1016/j.fgb.2008.03.015</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Oxfordshire</li>
</region>
<settlement>
<li>Oxford</li>
</settlement>
<orgName>
<li>Université d'Oxford</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bebber, D P" sort="Bebber, D P" uniqKey="Bebber D" first="D P" last="Bebber">D P Bebber</name>
<name sortKey="Darrah, P R" sort="Darrah, P R" uniqKey="Darrah P" first="P R" last="Darrah">P R Darrah</name>
<name sortKey="Fricker, M D" sort="Fricker, M D" uniqKey="Fricker M" first="M D" last="Fricker">M D Fricker</name>
<name sortKey="Watkinson, S C" sort="Watkinson, S C" uniqKey="Watkinson S" first="S C" last="Watkinson">S C Watkinson</name>
</noCountry>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Tlalka, M" sort="Tlalka, M" uniqKey="Tlalka M" first="M" last="Tlalka">M. Tlalka</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000676 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000676 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18467134
   |texte=   Quantifying dynamic resource allocation illuminates foraging strategy in Phanerochaete velutina.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18467134" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020